Articoli da leggere, se vi piace la linguistica computazionale.

Posted on 23 marzo 2012

0


Consiglio la lettura di questo documento: http://googleresearch.blogspot.it/2012/03/excellent-papers-for-2011.html

Si tratta di un elenco di articoli e ricerche dell’anno scorso che risultano particolarmente interessanti a tutti coloro che si occupano di motori di ricerca, infrormation retrieval e linguistica computazionale in genere.

Io suggerisco in particolare:

Reputation Systems for Open Collaboration”, B.T. Adler, L. de Alfaro, A. Kulshrestra, I. Pye, Communications of the ACM, vol. 54 No. 8 (2011), pp. 81-87.
This paper describes content based reputation algorithms, that rely on automated content analysis to derive user and content reputation, and their applications for Wikipedia and google Maps. The Wikipedia reputation system WikiTrust relies on a chronological analysis of user contributions to articles, metering positive or negative increments of reputation whenever new contributions are made. The Google Maps system Crowdsensus compares the information provided by users on map business listings and computes both a likely reconstruction of the correct listing and a reputation value for each user. Algorithmic-based user incentives ensure the trustworthiness of evaluations of Wikipedia entries and Google Maps business information.

On the necessity of irrelevant variables”, David P. Helmbold, Philip M. Long, ICML, 2011
Relevant variables sometimes do much more good than irrelevant variables do harm, so that it is possible to learn a very accurate classifier using predominantly irrelevant variables.  We show that this holds given an assumption that formalizes the intuitive idea that the variables are non-redundant.  For problems like this it can be advantageous to add many additional variables, even if only a small fraction of them are relevant.

Online Learning in the Manifold of Low-Rank Matrices”, Gal Chechik, Daphna Weinshall, Uri Shalit, Neural Information Processing Systems (NIPS 23), 2011, pp. 2128-2136.
Learning measures of similarity from examples of similar and dissimilar pairs is a problem that is hard to scale. LORETA uses retractions, an operator from matrix optimization, to learn low-rank similarity matrices efficiently. This allows to learn similarities between objects like images or texts when represented using many more features than possible before.

Unsupervised Part-of-Speech Tagging with Bilingual Graph-Based Projections”, Dipanjan Das, Slav Petrov, Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics (ACL ’11), 2011, Best Paper Award.
We would like to have natural language processing systems for all languages, but obtaining labeled data for all languages and tasks is unrealistic and expensive. We present an approach which leverages existing resources in one language (for example English) to induce part-of-speech taggers for languages without any labeled training data. We use graph-based label propagation for cross-lingual knowledge transfer and use the projected labels as features in a hidden Markov model trained with the Expectation Maximization algorithm.

Buona lettura.

Posted in: Facetiae